Sol-gel derived boehmite nanostructures is a versatile nanoplatform for biomedical applications

Авторы: Ярослав Соловьев, Прилепский А.Ю., Кривошапкина Е.Ф., Фахардо А.Ф., Брюшкова Е.А., Каликина П.А., Кошель Е.И., Виноградов В.В.

Abstract

Alumina is one of the most promising carriers for drug delivery due to the long history of its usage as a vaccine adjuvant. Sol-gel synthesis provides excellent conditions for entrapment of biomolecules within an inorganic cage providing stabilization of proteins under the extremal conditions. In this paper, we show in vitro investigation of monodisperse alumina xerogel nanocontainers (AXNCs) using bovine serum albumin as a model protein entrapped in sol-gel alumina building blocks. Particularly, dose and cell-type dependent cytotoxicity in HeLa and A549 cancer cell lines were employed as well as investigation of antibacterial effect and stability of AXNCs in different biological media. It was shown, that the release of entrapped protein could be provided only in low pH buffer (as in cancer cell cytoplasm). This property could be applied for anticancer drug development. We also discovered boehmite nanoparticles effect on horizontal gene transfer and observed the appearance of antibiotic resistance by means of exchanging of the corresponding plasmid between two different E. coli strains. The present work may help to understand better the influence of AXNCs on various biological systems, such as prokaryotic and eukaryotic cells, and the activity of AXNCs in different biological media.

DOI: 10.1038/s41598-018-37589-1

Read Full:

https://www.nature.com/articles/s41598-018-37589-1